
Management of Asthma & COPD

The overall goals of of therapy consist of ...

- 1. providing symptomatic control of asthma with normalization of lifestyle.
- 2. returning pulmonary function as close to normal as possible.
- 3. preventing chronic and troublesome symptoms (e.g., coughing, SOB).
- 4. preventing recurrent exacerbations.
- 5. minimizing adverse effects from medications.

Management of Asthma & COPD

- The goal of pharmacologic therapy should not merely alleviate symptoms, but also <u>prevent</u> <u>exacerbations</u> and <u>control chronic symptoms</u> by <u>reducing inflammation</u>.
- <u>Airway hyperresponsiveness is a major characteristic of asthma and may determine patient</u> symptoms, disease severity, and possibly mortality
- Since <u>airway inflammation</u> is the underlying factor in <u>airway responsiveness</u>, drugs which target airway inflammation are considered first-line agents.

Bronchial Inflammation → Airway Hyperresponsiveness → Airflow Obstruction → Asthma

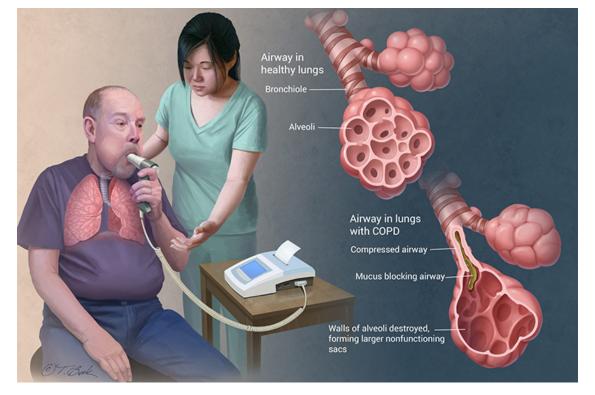
Management of Asthma & COPD

PATHOGENESIS

Genetic Factors ←→ Environmental Factors

- Air Pollution
- Allergens
- Cigarette Smoking
- Viral Infectious Agents

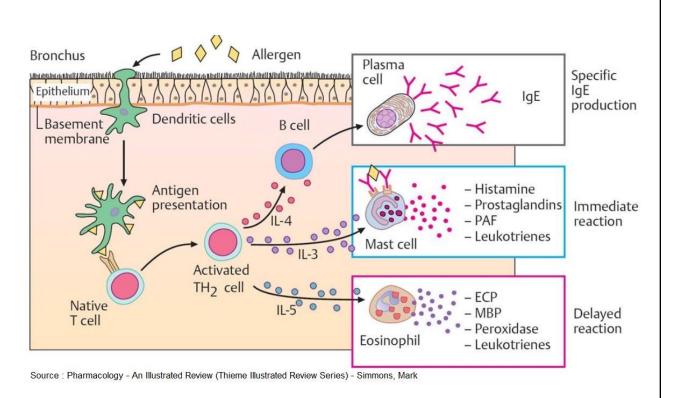
Bronchial Smooth Muscle Contraction


MANAGEMENT

Nonpharmacologic Therapy

- Patient Education
- Environmental Control
- Immunotherapy
 - Vaccinations
 - Influenza (Flu) Shot
 - Covid-19 Shot
 - RSV Shot
 - (Resp Syncytial Virus)
 - Pneumococcal Shot (Pneumovax, Prevnar)

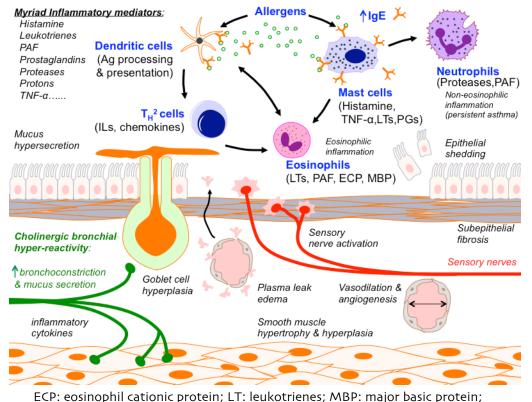
Pathogenesis of COPD


- COPD is a common, preventable and treatable disease that is characterized by persistent respiratory symptoms due to airway obstruction and alveolar abnormalities usually caused by significant exposure to noxious particles or gases (e.g., tobacco)
- The chronic airflow limitation that characterizes COPD is caused by small airway disease (bronchiolitis) and destruction of lung parenchyma (emphysema).
- Chronic inflammation causes irreversible structural changes in

COPD, characterized by small airway narrowing, mucociliary dysfunction, and destruction of lung parenchyma.

Pathogenesis of Asthma

- Allergens attach to and are taken up by dendritic cells in the ciliated respiratory epithelium.
- Antigen is presented to native T-cells, which differentiate into activated T-helper (TH₂) cells.
- TH₂ cells release cytokines:
 - IL-4 activates B cells → B cells differentiate into plasma cells
 - \rightarrow plasma cells release IgE
 - \rightarrow IgE attach to mast cells
 - → mast cells degranulate when allergen binds to two IgE molecules
 - IL-3 activate mast cells
 - → mast cells release inflammatory mediators: histamine, PG, and LT → cause bronchoconstriction, bronchospasm, mucosal swelling, and mucus production.



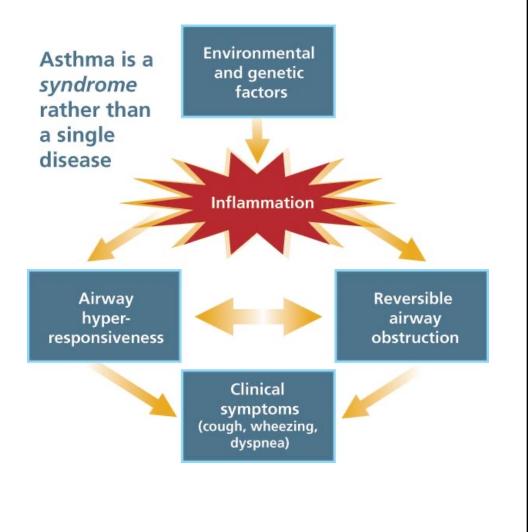
ECP: Eosinophil Cationic Protein; MBP: Major Basic Proteins; PAF: Platelet Activation Factor

Progressive Structural Changes in Severe Asthma

- In severe asthma, many inflammatory cells • are recruited and activated to release different cytokines and inflammatory mediators that cause bronchoconstriction, vasodilation, edema, mucus hypersecretion, and activation of sensory nerves.
- In time, structural changes develop in the airways: epithelial shedding, thickening of the basement membrane, subepithelial fibrosis, blood vessel proliferation (angiogenesis) and blood vessel dilation, hyperplasia of mucus-secreting cells (hypersecretion of mucus), smooth muscle hypertrophy and hyperplasia.
- In the late phase of allergen response, recruitment of multiple subtypes of immune cells (eosinophils, neutrophils, and memory Tcells) release multiple inflammatory mediators

PAF: platelet activating factor; PG: prostaglandins that cause cholinergic hyperactivity \rightarrow increase mucus secretion and bronchoconstriction in severe asthma that require inhaled anticholinergic agents.

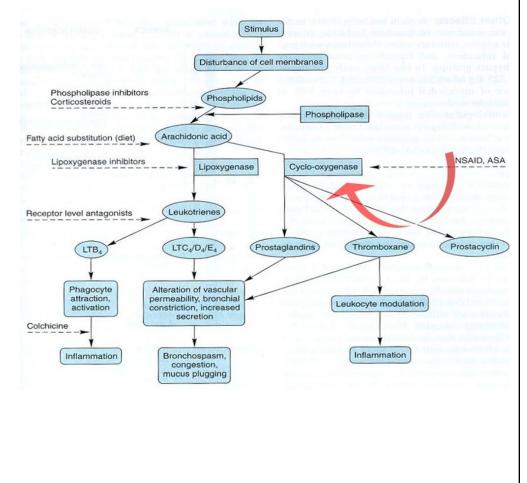
Therapeutic Options in Asthma


Anti-Inflammatory Agents

- Corticosteroids (Inhaled, Oral, Injectable)
- Mast Cell Stabilizer (Inhaled)
 - Cromolyn Sodium (Intal)
- Leukotriene Antagonists (Oral)
 - Montelukast (Singulair)
- Immunomodulators (Injectable)
 - Omalizumab (Xolair)

Bronchodilators

•


- Beta-2 Agonists (Inhaled, Oral, Injectable)
 - Albuterol (Proventil, Ventolin)
- Anticholinergic Agents (Inhaled)
 - Ipratropium Bromide (Atrovent)
 - Methylxanthines (Oral, Injectable)
 - Theophylline (Theo-Dur)

Inhaled Corticosteroids (ICS)

Beclomethasone (QVAR), Budesonide (Pulmocort), Fluticasone (Flovent), Triamcinolone (Azmacort), Mometasone (Asmanex), and Flunisolide (AeroBID)

- <u>Mechanisms of Action</u>: ICS are nonspecific suppressors of inflammation
 - ICS inhibit arachidonic acid metabolism, resulting in the decreased production of leukotrienes and prostaglandins
 - ICS reduce the migration and activation of inflammatory cells by inhibiting cytokine production
 - ICS increase the responsiveness of the beta₂-receptors of airway smooth muscle

Inhaled Corticosteroids (ICS)

- <u>Side Effects</u>: cough, dysphonia, oral thrush (candidiasis)
 - cough, due to the additive oleic acid, may occur with the use of some corticosteroid inhaler products; but is minimized by the use of spacers
 - · reversible dysphonia may occur with deposition of the steroid on vocal cords
 - localized infection with Candida albicans may occur in the mouth, pharynx, or the larynx

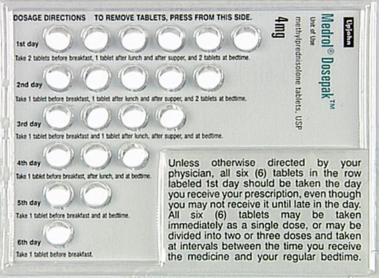
Major Adverse Effects of Systemic Corticosteroids

Metabolic & Endocrine	<u>Neuropsychiatric</u>	Bone & Muscle
Hyperglycemia	Dysphoria/Depression	Osteoporosis
Adrenal Insufficiency	Mania/Psychosis	Myopathy
(i.e., HPA-Axis Suppression)	Euphoria	
	Insomnia	Dermatologic & Appearance
Immune System		Cushingoid Appearance
Immunosuppression (risk of infection)	<u>Ophthalmologic</u>	Facial Erythema
	Elevated Intraocular Pressure	Skin thinning
<u>Hematologic</u>	Cataract Formation	Weight Gain
Leukocytosis	Exophthalmos	Hirsutism
		Acne
<u>Cardiovascular</u>	Gastrointestinal	Striae
Fluid Retention	Gastritis	
Hypertension	Peptic Ulcer Disease (PUD)	

Inhaled Corticosteroids (ICS)

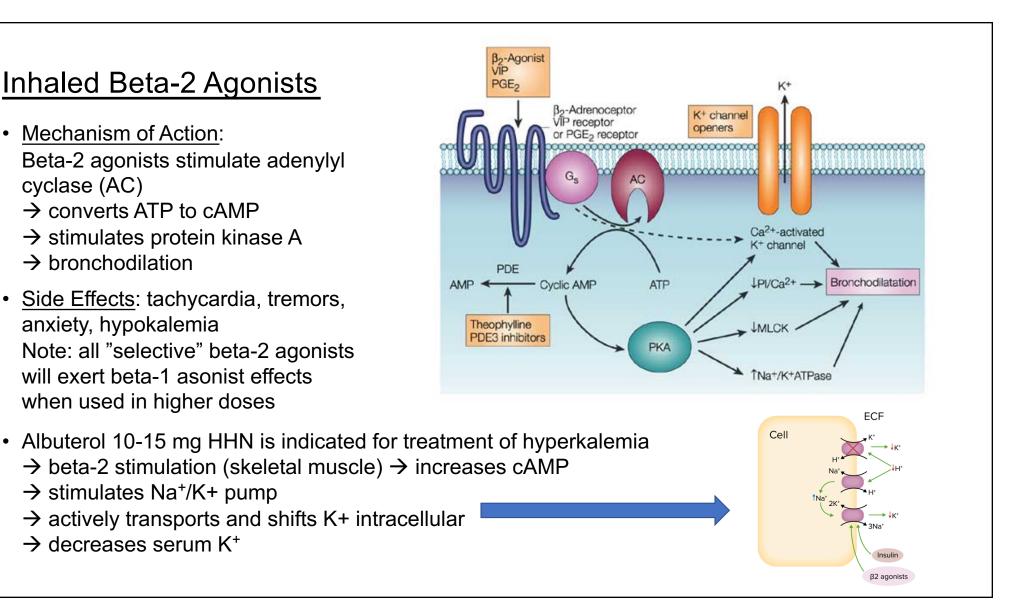
- Prevention of Oral Thrush
 - the incidence of oral thrush may be reduced by the use of a spacer and with rinsing the mouth (swish and spit) following use of an ICS
- Treatment of Oral Thrush
 - Nystatin (Mycostatin) Oral Suspension: swish and swallow 5 ml (1 tsp) QID
 - Clotrimazole Troches (Mycelex): 1 troche five times daily for 7-14 days

Cromolyn (Intal) & Nedocromil (Tilade) Inhalers


- Cromolyn and nedocromil are non-steroidal, but less potent
 anti-inflammatory agents
- <u>Mechanism of Action</u>: Cromolyn and nedocromil stabilize the mast cell membrane
 - \rightarrow prevents degranulation of mast cells
 - → inhibits release of inflammatory mediators (i.e., histamine, leukotrienes, prostaglandins)
- Side Effects: Cough and throat irritation
 - Cromolyn and nedocromil are generally well tolerated have favorable side effect profiles and may be considered for use in patients with mild asthma
- Concomitant therapy with cromolyn or nedocromil with inhaled corticosteroids may permit reduction in the dose of ICS in patients requiring high doses of the latter

Oral Corticosteroid Therapy

- Oral corticosteroid therapy can be divided into 2 approaches: (1) "burst" tx and (2) long-term tx
 - Burst Regimens of 7-14 days are appropriate for acute exacerbations of asthma
 - <u>HPA-axis Suppression</u>: Little or no residual effect on the HPA-axis occurs after burst therapy and tapering is not necessary to prevent adrenal insufficiency; however, it is often useful to taper the corticosteroid dose to evaluate the effect of withdrawal on a patient's asthma symptoms
 - Example of Burst Regimen: Prednisone each morning: 60 mg on days 1-3; 50 mg on day4; 40 mg on day 5: 30 mg on day 6; 20 mg on day 7; 10 mg on day 8; 5 mg on day 9-10; then stop. Dispose: Prednisone 10 mg # 35 tablets
 - <u>Medrol Dosepak (methylprednisolone 4 mg tabs) is a</u> convenient and easy-to-use oral corticosteroid taper
 - <u>Side Effects of Long-Term Tx of Systemic Corticosteroids</u>: HPA-axis suppression, weight gain, hypertension, hyperglycemia, osteoporosis, myopathy, psychiatric disturbance, and cataracts



- Mechanism of Action: ٠ Beta-2 agonists stimulate adenylyl cyclase (AC) \rightarrow converts ATP to cAMP
 - \rightarrow stimulates protein kinase A

 \rightarrow stimulates Na⁺/K+ pump

 \rightarrow decreases serum K⁺

- \rightarrow bronchodilation
- Side Effects: tachycardia, tremors, ٠ anxiety, hypokalemia Note: all "selective" beta-2 agonists will exert beta-1 asonist effects when used in higher doses

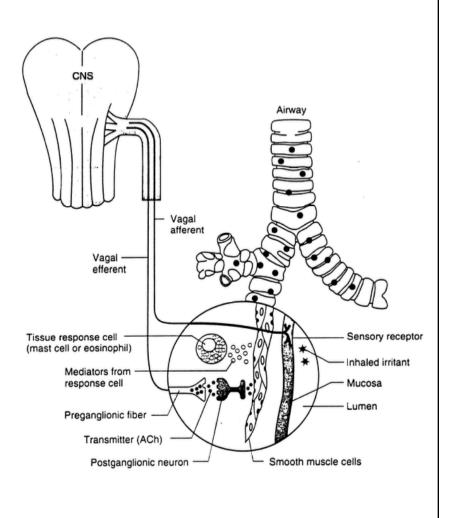
<u>Comparison of Selected B-Agonist Bronchodilators</u>

		Receptor Selectivity			
Agent	Dosages Forms ^a	β1	β2	β ₂ Potency ^b	Duration of Action (hr) ^c
Epinephrined	Inj, AS, MDI	+++	+++	2	0.5-2
Isoproterenol (Isuprel)	Inj, AS, MDI, SL	++++	++++	1	0.5-2
Isoetharine (Bronkosol)	AS, MDI	++	+++	6	0.5-2
Metaproterenol (Alupent)	AS, MDI, PO	++	++	10	3-4
Terbutaline (Brethine)	Inj, MDI, PO, AS	+	++++	4	4-8
Albuterol (Ventolin, Proventil)	AS, MDI, PO	+	++++	2	4-8
Bitolterol (Tornalate)	MDI	+	++++	4	4-8
Pirbuterol (Maxair)	MDI	+	++++	4	4-8
Formoterol	MDI	+	++++	0.24	8-12
Salmeterol (Serevent)	MDI	+	++++	0.50	12

- <u>Long-Acting Beta-2 Agonists (LABA</u>): Salmeterol (Serevent) & Formoterol (Performomist)
 - Compared to SABA, salmeterol (but not formoterol) has slower onset of action (15-30 mins)
 - LABA provide long-term prevention of symptoms, usually added to ICS in combination products: Symbicort MDI (Budesonide + Formoterol) and Advair MDI (Salmeterol + Fluticasone)
 - Advantages of LABA: (1) BID administration is effective in preventing nocturnal asthma symptoms, and (2) LABA taken in the morning provides 12-hour prophylaxis in children attending school.

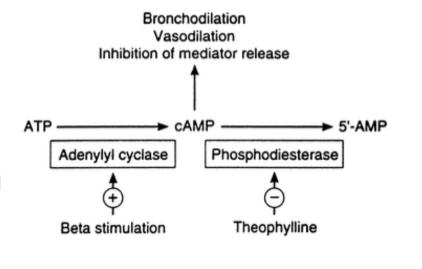
- Levalbuterol (Xopenex)
 - Levalbuterol at hone-half the mcg dose produces clinically comparable bronchodilation as albuterol → reduces cardiac adverse effects (tachycardia) and is preferred in patients with atrial fibrillation.

	BETA-1	BETA-2
ALBUTEROL	+	+++
LEVALBUTEROL (Xopenex)	+/-	+++

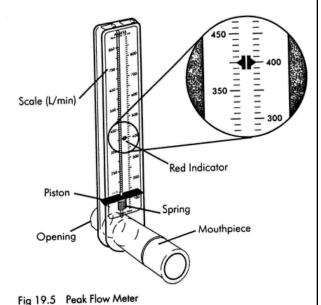


Inhaled Anti-Cholinergic (Anti-Muscarinic) Agents (SAMA & LAMA)

SAMA: <u>Ipratropium Bromide</u> (Atrovent) LAMA: <u>Tiotropium Bromide</u> (Spiriva)


- MOA: (1) inhibit muscarinic cholinergic receptors

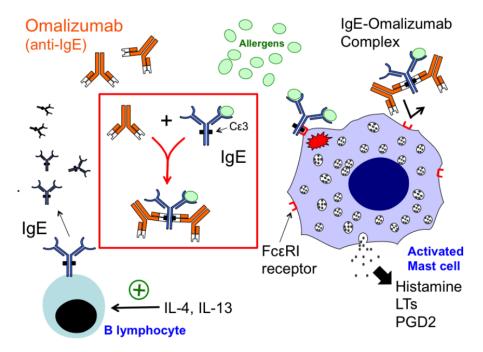
 → bronchodilation, and (2) reduce intrinsic vagal
 tone of the airways → block reflex bronchoconstriction
 secondary to irritants or to GERD
- These agents are more effective in COPD, in which vagal-mediated bronchoconstriction is predominant, than in asthma
- Since SAMA and LAMA are less effective than beta-2 agonists in treatment of asthma/COPD, they are usually combined with beta-2 agonists: DuoNeb (albuterol 2.5 mg / ipratropium 0.5 mg in 3 ml saline)
- Side Effects: systemic anticholinergic effects include dry mouth, blurred vision, urinary retention, etc...


Methylxanthine: Theophylline (Theo-Dur)

- <u>General Considerations</u>
 - Theophylline is not effective as an aerosolized inhaler and must be given orally or intravenously → increases systemic side effects.
 - Theophylline is less effective as a bronchodilator than beta-2 inhaled agonists.
 - Theophylline causes many drug-drug interactions and serious adverse effects.
 - Theophylline has a narrow therapeutic range (10-20 mcg/ml) \rightarrow potentiates toxicities.
 - Theophylline is considered a 3rd or 4th line adjunctive agent in persistent asthma.
- <u>Mechanisms of Action</u>: Besides smooth muscle relaxation, the beneficial effects of theophylline that have been postulated have included an anti-inflammatory effect, an improvement in mucociliary clearance, increased diaphragmatic contractility, and increased respiratory drive.
- <u>Side Effects & Toxicities</u>: nausea, vomiting, dyspepsia, GI reflux, diarrhea, tachycardia, insomnia, headaches, irritability, arrhythmias, seizures, cardiac arrest, death.

Acute Exacerbations of Asthma

- The first indication of an exacerbation is either an increase in symptoms or a decline in the <u>PEFR</u> below the patient's normal range. (PEFR: peak expiratory flow rate, which correlates with FEV₁)
- The "<u>Zone System</u>" uses the PEFR to provide an objective measurement of exacerbation severity
- Many moderate-severe exacerbations are best treated at home with a short course ("burst tx") with oral prednisone.
- The failure of symptoms and the PEFR to improve 6 hour after oral corticosteroids are taken indicates an inadequate response and consideration should be given to an <u>ER evaluation</u>.
- <u>Dr. Roger Bone</u>: Patients should have oral prednisone on hand so that they can take 40-60 mg as soon as they begin to have an acute attack, since oral or intravenous corticosteroids take about 6 hours before they significantly improve PEFR
 - The challenge is to educate patients to begin taking oral prednisone when symptoms dictate.
 - The patient's job is to take the prednisone and the clinician's job is to taper the dosage.


		Best PEF Rate,	AM/PM PEF
Zone	Interpretation	%	Variability, %
Green	All clear	>80	<20
Yellow	Caution	50-80	20-30
Red	Alert	< 50	>30

Complicating Factors

- Gastroesophageal Reflux Disease (GERD)
 - GERD may trigger severe bronchospasm and increase airway hyper-responsiveness
 - The reflux of acidic fluid into the upper esophagus or with aspiration into the trachea is a common cause of refractory asthma.
 - Treatment: (1) Proton-Pump Inhibitors: Omeprazole (Prilosec), Pantoprazole (Protonix) and/or (2) Prokinetic Agent / Antiemetic: Metoclopramide (Reglan)
- Rhinitis / Sinusitis
 - Rhinitis and sinusitis may also make asthma difficult to control.
 - Recurrent postnasal drip irritates the larynx and trachea and increases airway hyperresponsiveness → bronchospasm.
 - Treatment: (1) Antihistamines: Cetirizine (Zyrtec), (2) Decongestants: Pseudoephedrine (Sudafed), and (3) Glucocorticoid Nasal Sprays: Fluticasone (Flonase)

Immunomodulators: Omalizumab (Xolair)

- Indication: Long-term control and prevention of symptoms in patients > 12 years old who have moderate-severe persistent allergic asthma inadequately controlled with ICS.
 - Omalizumab is administered every 2-4 weeks.
- MOA: Omalizumab binds to IgE → blocks IgE from binding to receptors on basophils and mast cells → decreases mast cell mediator release due to allergen exposure.
- Side Effects: pain and brusing on injection site (5-20%), malignant neoplasms (0.5%), anaphylaxis (0..5%).

Figure 11. Omalizumab is a humanized monoclonal antibody that binds to the C ϵ 3 domain of circulating IgE, which prevents IgE from binding to and activating receptors on mast cells and lymphocytes. In this illustration, a mast cell is used to illustrate the beneficial effects of omalizumab.

Asthma in Pregnancy

- The same stepped-care approach used for general asthma control is used for asthma control during pregnancy.
- No therapy has been proven absolutely safe for use during pregnancy \rightarrow consideration is given to risks vs benefits.
- · For pregnant patients requiring antiinflammatory therapy, the use of beclomethasone or cromolyn inhalers is supported by human studies.
- Burst treatment with oral corticosteroids are appropriate for the treatment of asthma exacerbation because corticosteroid use in preferable to the deleterious physiologic effects of withholding treatment.

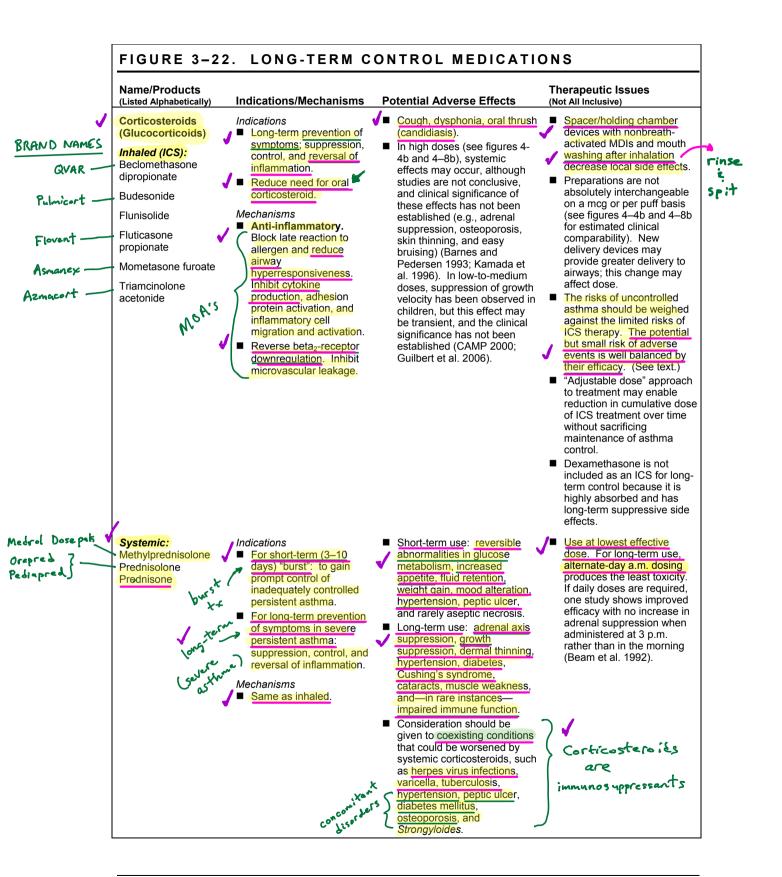
Risk Factor Category According to Manufacturer's FDA Approved Product Labeling

Bronchodilator

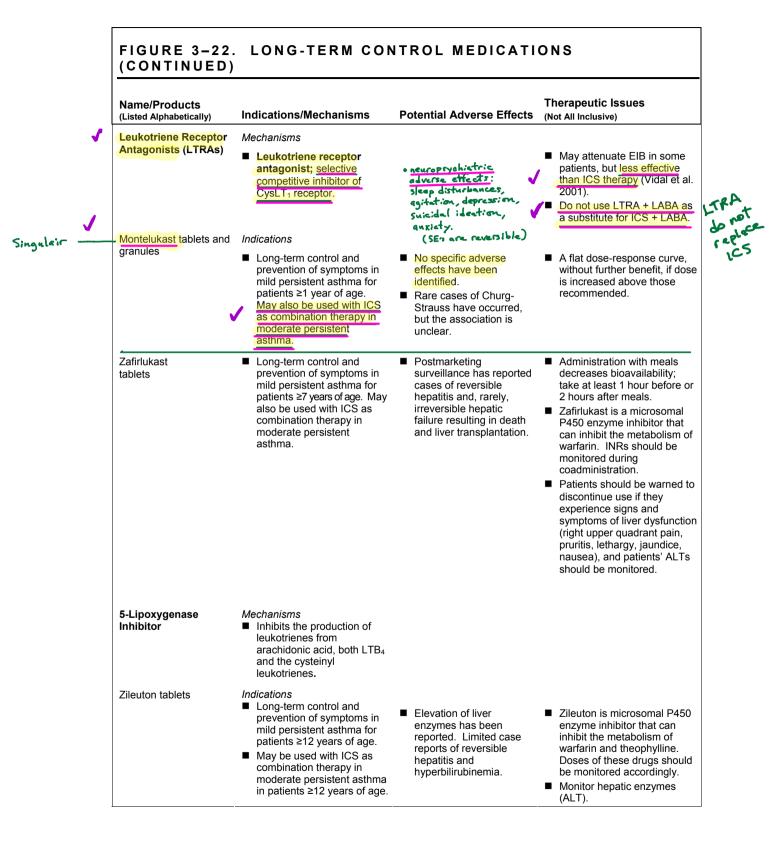
Albuterol	С
Metaproterenol	С
Terbutaline	в
Theophylline	С

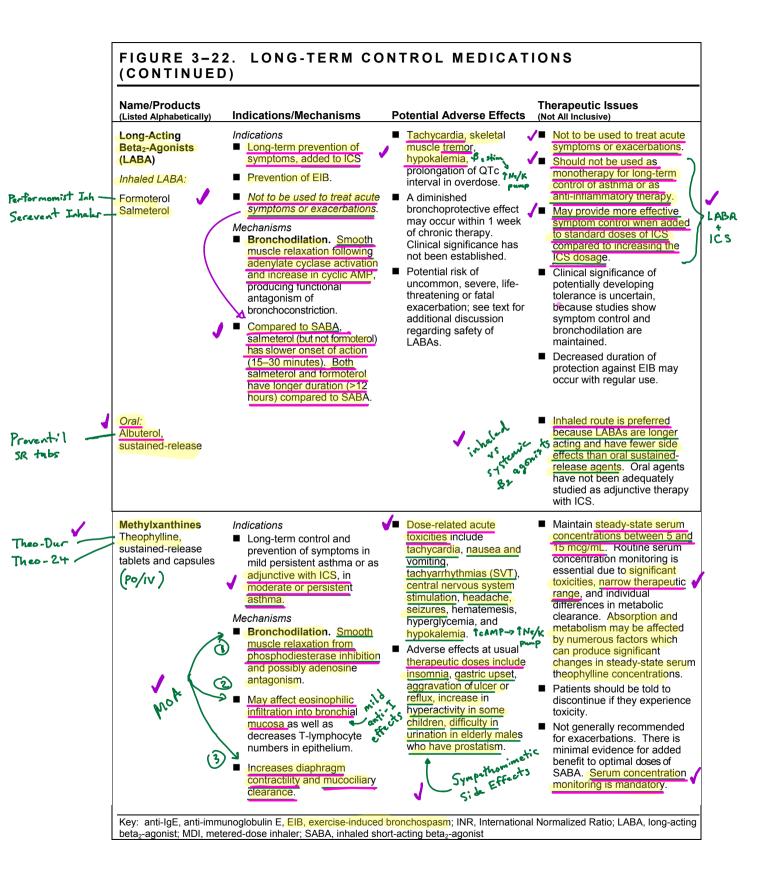
Anti-inflammatory C

Cromolyn sodium	в
Beclomethasone dipropionate	С
Prednisone	(Not rated)
Flunisolide	C
Triamcinolone	D

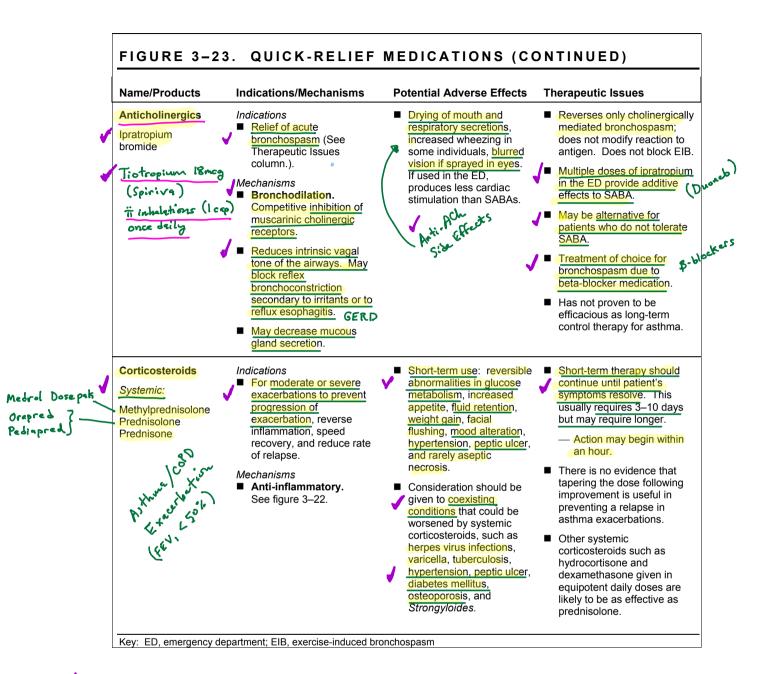

Antihistamine

Chlorpheniramine	В
Brompheniramine	С
Terfenadine	С
Astemizole	С
Triprolidine	в


Key to Risk Factor Ratings


Category

- A Controlled studies show no risk. Adequate, well-controlled studies in pregnant women have failed to demonstrate risk to the fetus.
- B No evidence of risk in humans. Either animal findings show risk, but human findings do not; or, if no adequate human studies have been done, animal findings are negative.
- C Risk cannot be ruled out. Human studies are lacking, and animal studies are either positive for fetal risk, or lacking as well. However, potential benefits may justify the potential risk.
- D Positive evidence of risk. Investigational or postmarketing data show risk to the fetus. Nevertheless, potential benefits may outweigh the potential risk.
- X Contraindicated in pregnancy. Studies in animals or humans, or investigational or postmarketing reports, have shown fetal risk that clearly outweighs any possible benefit to the patient.


	FIGURE 3-22 (CONTINUED	. LONG-TERM CON)	ITROL MEDICATIO	NS
	Name/Products (Listed Alphabetically)	Indications/Mechanisms	Potential Adverse Effects	Therapeutic Issues (Not All Inclusive)
Intal Inhaler Tilade Inhaler	Cromolyn Sodium and Nedocromil	 Indications Long-term prevention of symptoms in mild persistent asthma; may modify inflammation. Preventive treatment prior to exposure to exercise or known allergen. Mechanisms Anti-inflammatory. Blocks early and late reaction to allergen. Interferes with chloride channel function. Stabilizes mast cell membranes and inhibits activation and release of mediators from eosinophils and epithelial cells. Inhibits acute response to exercise, cold dry air, and SO₂. 	 Cough and irritation. 15–20 percent of patients complain of an unpleasant taste from nedocromil. 	 Therapeutic response to cromolyn and nedocromil often occurs within 2 weeks, but a 4- to 6-week trial may be needed to determine maximum benefit. Dose of cromolyn by MDI (1 mg/puff) may be inadequate to affect airway hyperresponsiveness. Nebulizer delivery (20 mg/ampule) may be preferred for some patients. Safety is the primary advantage of these agents.
	Immunomodulators Omalizumab (Anti-IgE) For subcutaneous use	 Indications Long-term control and prevention of symptoms in adults (≥12 years old) who have moderate or severe persistent allergic asthma inadequately controlled with ICS. Mechanisms Binds to circulating IgE, preventing it from binding to the high-affinity (FcɛRI) receptors on basophils and mast cells. Decreases mast cell mediator release from allergen exposure. Decreases the number of FcɛRIs in basophils and submucosal cells. 	 Pain and bruising of injection sites has been reported in 5–20 percent of patients. Anaphylaxis has been reported in 0.2 percent of treated patients. Malignant neoplasms were reported in 0.5 percent of patients compared to 0.2 percent receiving placebo; relationship to drug is unclear. 	 Monitor patients following injection. Be prepared and equipped to identify and treat anaphylaxis that may occur. The dose is administered either every 2 or 4 weeks and is dependent on the patient's body weight and IgE level before therapy. A maximum of 150 mg can be administered in one injection. Needs to be stored under refrigeration at 2–8 °C. Whether patients will develop significant antibody titers to the drug with long-term administration is unknown.

	BETA-1	BETA-2
ALBUTEROL	+	+++
LEVALBUTEROL (Xopenex)	+/-	+++

Common Combined LABA + ICS Products

Steroid and long-acting beta	Budesonide and formoterol	Symbicort	Metered dose inhaler*
agonist combinations	Fluticasone and salmeterol	Advair Diskus, Advair HFA	Dry powder inhaler, metered dose inhaler*
Symbicart BID dosing	Fluticasone and vilanterol	Breo Ellipta	Dry powder inhaler
	Mometasone and formoterol	Dulera	Metered dose inhaler*

+ combination (MDI) inhalers containing ICS + LABA

solmeterol formateral (preferred)

