Hypertension: JNC-6 (Archive)

Southern California University of Health Sciences Physician Assistant Program

Management and Treatment of Hypertension April 17, 2018, presented by Ezra Levy, Pharm.D.

HYPERTENSION (NIH Study)

I. Introduction

- A. NIH Study: since its inception (1972) progress in the detection, treatment, and control of HTN has been remarkable
 - in the last 2 decades, the following observations were reported:
 - (1) number of patients aware of their hypertensive condition has increased dramatically
 - (2) the percentage of hypertensive patients taking medication and controlling their HTN improved significantly
 - (3) mortality from coronary heart disease (CHD) decreased by approx. 50%
 - (4) mortality from stroke decreased by 57%
 - progress in the detection, treatment, and control of HTN has significantly contributed to the reported decreases in mortality rates for CHD and stroke since HTN is a major risk factor for CHD and the most important risk factor for stroke

B. Clinical Evaluation

- 50 million Americans have elevated BP:
 - SBP > or = 140 mm Hg and/or
 - DBP > or = 90 mm Hg
- the prevalence of HTN:
 - increases with age
 - is greater for blacks than for whites
 - is greater in less educated people (both races, whites and blacks)
 - is much greater in lower socioeconomic groups
 - is greater in men than women (in young adulthood and early middle age)
 - is greater in women than men (after middle age)
 - is greater in people living in the southeastern U.S. than people living in other areas of the country

B. Clinical Evaluation (continued)

- risks for cardiovascular diseases (CVDs), including CHD and stroke, are lowest for adults with average SBP < 120 mm Hg and average DBP < 80 mm Hg
- at every level of DBP, risk of CVDs are greater with higher levels of SBP
- in middle-aged and older people, elevated SBP with normal DBP is associated with increased risk of CVD → "isolated systolic hypertension"

C. New Classification of High Blood Pressure

- (1) high-normal BP is a new category (SBP=130-139 / DBP=85-89)
 - people with SBP and/or DBP in this range are at increased risk of progressing to high BP → increased risk of experiencing non-fatal and fatal CVDs
 - people with high-normal BP should be:
 - monitored frequently
 - counseled about life-style measures → reduce BP
 - pharmacologic treatment is rarely needed in people with high normal BP

(2) table 2: Classification of BP for Adults (18 Years and Older)

Classification of Blood Pressure for Adults Aged 18 Years & Older

Category	Systolic (mm Hg)	Diastolic (mm Hg)
Normal	< 130	< 85
High Normal	130-139	85-89
Hypertension		
Stage 1 (mild)	140-159	90-99
Stage 2 (moderate)	160-179	100-109
Stage 3 (severe)	180-209	110-119
Stage 4 (very severe) > or = 210	> or = 120

(2) table 2: Classification of BP for Adults (continued)

- all stages of HTN are associated with increased risk of nonfatal & fatal CVDs and renal disease
- the higher the BP, the greater the risk of CVDs
- stage 1: (previously termed "mild" HTN)
 - most common form of HTN
 - responsible for a major proportion of the incidence of morbidity, disability, and mortality associated with HTN
- all stages of HTN require long-term therapy

D. Cost of Drugs

- generic drugs → reduced drug costs
- new drugs used in HTN are expensive (up to 30 times more than generic diuretics and beta blockers)
- drug dosages may be reduced with patient education and counseling for diet and weight control → decreased drug costs
- dividing a scored tablet in half for the prescribed dose → cost savings

E. Treatment of HTN

(1) Goal

- the ultimate goal in treating HTN is to prevent morbidity and mortality
 - objectives:
 - a. control BP by the least intrusive method possible \rightarrow life-style modification
 - b. maintain: SBP < 140 and DBP < 90

or

SBP < 135 and DBP < 85 (if possible)

- (2) Life-Style Modification (previously termed "nonpharmacologic therapy")
 - a. lose wt if overweight
 - wt reduction decreases BP in most pts who are 10% above ideal wt

```
IBW = (2.3 \text{ x ht in inches above 5'}) + 45.5 \text{ kg} (female)
```

IBW =
$$(2.3 \text{ x ht in inches above 5'}) + 50 \text{ kg}$$
 (male)

- b. limit alcohol intake to < or = 1 ounce of alcohol (24 oz or beer, 8 oz of wine, or 2 oz of 100 proof whiskey)
- c. exercise
- d. reduce sodium intake < 100 mmol/d (< 6 gm of NaCl)
- e. maintain adequate dietary K, Ca, and Mg
 - hypokalemia → may increase BP and induce ventricular ectopy
 - → important in patients on diuretics
 - hypocalcemia → associated with increased BP (in some studies)
 - there is no rationale for increasing Ca intake in excess of the recommended daily allowance (800-1200 mg)
 - hypomagnesemia → "suggested" association with increased BP
 - there is no conclusive data to justify Mg supplementation to lower BP
- f. stop smoking
- g. reduced dietary saturated fat and cholesterol intake

F. Pharmacologic Treatment of HTN

(1) General Considerations

- the decision to initiate drug therapy in patients with HTN requires the following considerations:
 - a. severity of the HTN
 - b. TOD (target-organ disease)
 - C. presence of other conditions and risk factors

table 3: Manifestation of Target-Organ Disease

Organ System Manifestations		
Cardiac	Clinical, electrocardiographic, or radiologic evidence of coronary artery disease; left ventricular hypertrophy or "strain" by EKG or left ventricular hypertrophy by EKG; left ventricular dysfunction or cardiac failure	
Cerebrovascular	Transient ischemic attack or stroke	
Peripheral Vascular	Absence of 1 or more major pulses in extremities (except for dorsalis pedis) with or without intermittent claudication; aneurysm	
Renal	Serum creatinine > or = 1.5 mg/dL; proteinuria (1+ or greater); microalbuminuria	
Retinopathy	Hemorrhages or exudates, with or without papilledema	

(2) Pharmacologic Efficacy

- reducing BP with drugs → decreases cardiovascular mortality and morbidity → decreases incidence of stroke, coronary events, CHF, more severe HTN, and all-cause mortality
- studies indicate that:
 - 42% reduction in stroke from a 5 to 6 mm Hg drop in DBP
 - 20 25 % reduction in the rate of CHDs

(3) Stage 1 and Stage 2 Hypertension

- if BP remains at 140/90 during a 3 4 month period → pharmacologic tx (after encouragement of life-style modifications)
- if DBP = 90 94 and SBP = 140 149 \rightarrow withhold drug tx in the absence of TOD & risk factors \rightarrow follow-up at 3 to 6 month intervals (since BP may increase)

(4) Initial Drug Therapy

- initial drug therapy (stage 1 and stage 2) → monotherapy
- a. diuretics and beta blockers \rightarrow preferred for initial drug therapy
 - clinical trials have shown diuretics and beta blockers reduce cardiovascular M/M

b. Alternative Drugs

- calcium channel blockers, ACE inhibitors, alpha-1 blockers, and alpha-beta blockers
 - → equally effective in reducing BP
 - → have not been shown in long-term clinical trials to reduce M/M
 - \rightarrow should be used when diuretics and beta blockers have been ineffective or unacceptable (d/t side effects, etc...)
- C. Supplemental Antihypertensives (not for initial monotherapy)
 - direct-acting smooth muscle vasodilators (hydralazine, minoxidil)
 - → induce reflex sympathetic stimulation of the cardiovascular system
 - > cause fluid retention
 - alpha-2 agonist
 - → cause annoying side effects in many patients
 - peripheral adrenergic neuron antagonists
 - > cause annoying side effects in many patients

d. Special Considerations

- Demographic Characteristics
 - blacks → more responsive to diuretics & Ca channel blockers than beta blockers or ACE inhibitors
 - geriatrics → responsive to all classes of drugs
 - gender → no special determinations
 - NOTE: issues concerning race, age, or gender are not reasons for avoiding any drug class especially if a particular drug offers other therapeutic benefits since efficacy differences may be accomplished by the addition of a diuretic or another drug
- ii. Concomitant Diseases and Therapies
 - anti-HTN drugs may axacerbate some disease states while improving others:

beta blockers improve → angina

→ cardiac dysrhythmias
→ migraine headaches
→ prolong life after a MI

beta blockers worsen → asthma

→ diabetes

→ peripheral ischemia

- selecting an anti-HTN drug that treats a coexisting disease state
 - → simplifies drug regimen
 - → reduces side effects
 - → reduces drug costs
- iii. Quality of Life → Side Effects
 - anti-HTN drugs may cause undesirable side effects:
 - central acting drugs → drowsiness & sedation
 - beta blockers → reduce exercise tolerance

iv. Physiologic Factors

 body wt, heart rate, plasma renin activity, hemodynamic measures → helpful in choosing a specific agent

high renin levels \rightarrow ACE inhibitor

v. Economic Considerations

• cost of drugs → may be a barrier to controlling HTN

e. Dosage and Follow-up

- i. the lowest dosage of initial drug should be used even though it may not immediately control BP \rightarrow avoidance of side effects
- ii. the lowest dose should be given for several weeks before increasing the dosage of the drug \rightarrow time required to assess efficacy and side effects
- iii. a drug given once or twice daily \rightarrow improves patient compliance \rightarrow controls BP
- iv. after 1 to 3 months, if response to initial therapy is (1) adequate, (2) pt is not experiencing significant side effects, and (3) patient compliance is adequate, then 3 options may be considered:
 - 1. increase the dose of the first drug
 - 2. substitute an agent from another class
 - 3. add a second drug from another class
 - combining antihypertensives with different mechanisms of action → lower doses of drugs used to achieve BP control → decreases dose-dependent side effects
 - ullet addition of a 2nd agent usually enhances the effects of the 1st drug
 - example: adding a diuretic enhances the effects of other agents
 - if addition of a 2nd drug results in adequate BP control, an attempt to discontinue the 1st drug may be worthwhile since monotherapy will control BP for at least 50% of all patients
 - after achieving a level of BP control, substituting comparable combination tablets may simplify patients' drug regimens and promote compliance

- v. Causes of Lack of Responsiveness to Therapy
 - clinicians should assess the possible reasons for lack of responsiveness to drug therapy before proceeding to the next treatment step
- (5) Stage 3 and Stage 4 Hypertension

(patients with DBP > or = 110 and/or SBP > or = 180)

- patients in stage 3 and 4 may respond adequately to monotherapy; however, a 2nd or 3rd agent is usually necessary for BP control
 - intervals between regimen changes may be decreased for BP control
 - maximum doses of some drugs may be increased for BP control
- some patients may require initial treatment with more than one drug for adequate antihypertensive effects
- patients with DBP > 120 with significant TOD may require hospitalization
- (6) Isolated Systolic Hypertension (ISH)
 - a. Adolescents and Young Adults
 - ISH → often indicates hyperdynamic circulation which may be predictive of future elevation of DBP
 - if life style-modifications ineffective, drug therapy should be considered
 - b. Older Persons
 - ISH → SBP > or = 160 and DBP < 90 → drug therapy if life-style modifications ineffective

(7) Step-Down Therapy

- after BP has been controlled for 1 year (with at least 4 office visits), an attempt to reduce antihypertensive drug therapy in a gradual, progressive manner is recommended
- step-down therapy is particularly successful in patients who are also practicing life-style modifications
- regular follow-up should be arranged after discontinuing antihypertensive drugs since BP usually increases to hypertensive levels months or years after discontinuation especially if life-style modifications were discontinued

(8) J-Curve Hypothesis

- concerns about lowering DBP with antihypertensive drugs has raised the Jcurve hypothesis:
 - low DBP (< 90) → low diastolic perfusion pressure in coronary circulation → risk of coronary disease
- this hypothesis may be more important in patients with preexisting CAD
- currently, these is no evidence to support the J-curve hypothesis and clinical trails have supports the reduction of DBP to less than 90 mm Hg
- (9) Resistant Hypertension
 - a. HTN is considered resistant if a patient's BP:
 - i. cannot be reduced to less than 160/100 by a triple-drug regimen given in maximal doses
 - ii. pretreatment BP was > 180 / 115

<u>or</u>

- i. cannot be reduced to less than 140 / 90 by a triple-drug regimen given in maximal doses
- ii. pretreatment BP was < 180 / 115
- b. isolated systolic HTN is considered resistant if an older patient's SBP:
 - i. cannot be reduced to less than 170 mm Hg
 - ii. pretreatment SBP was > 200 mm Hg

<u>or</u>

- i. cannot be reduced to less than 160 mm Hg & by at least 10 mm Hg
- ii. pretreatment SBP was 160 200 mm Hg

(10) Follow-up Visits

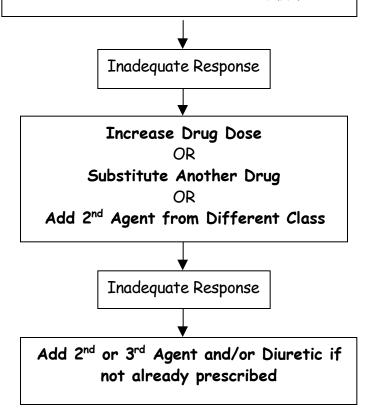
- a. goal of drug therapy: achieving and maintaining target BP with the lowest possible drug doses → requires ongoing follow-up for dosage adjustments
- b. patients with stage 1 HTN without TOD
 - i. should be seen within 1 to 2 months after start of therapy to assess BP control, patient compliance, and presence of side effects
 - ii. once BP is controlled, follow-up at 3- to 6- month intervals

(11) Strategies to Improve Adherence to Therapy

- poor patient compliance to long-term tx (life-style modifications and pharmacologic therapy) → inadequate control of BP → increased HTNrelated M/M
- quidelines to improve adherence to treatment:
 - a. simplify the drug regimen
 - b. include patient in the decision making process
 - C. incorporate the treatment into the patient's daily life -style
 - d. set realistic short-term objective of the treatment plan with the patient
 - e. encourage discussion of side effects
 - f. minimize drug costs
 - g. indicate that you will ask about compliance at the next office visit

Pharmacologic Treatment of Hypertension

Life-Style Modifications


Wt Reduction Moderation of Alcohol Intake Regular Physical Activity Reduction of Sodium Intake Smoking Cessation

Inadequate Response

Continue Lifestyle Modifications

Initial Pharmacologic SelectioN

- Diurectics or Beta-Blockers are preferred because reduction in M/M has been demonstrated
- ACE-inhibitors, Ca channel blockers, alphablockers, and alpha-beta blockers have not been tested nor shown to reduce M/M

