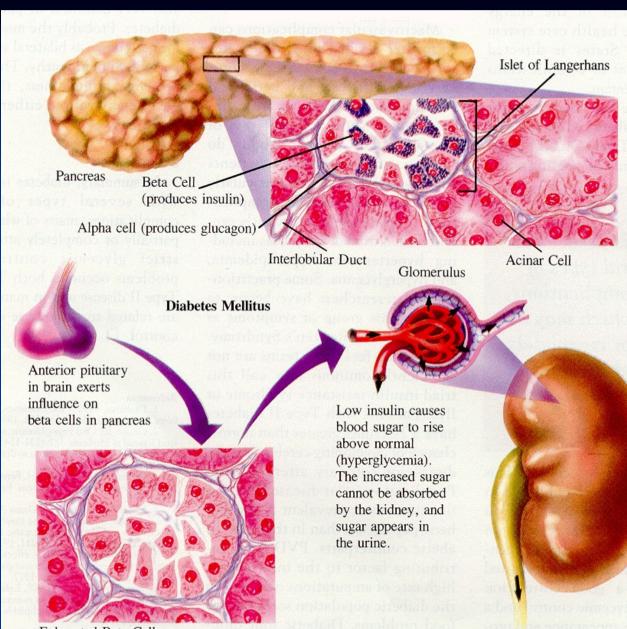
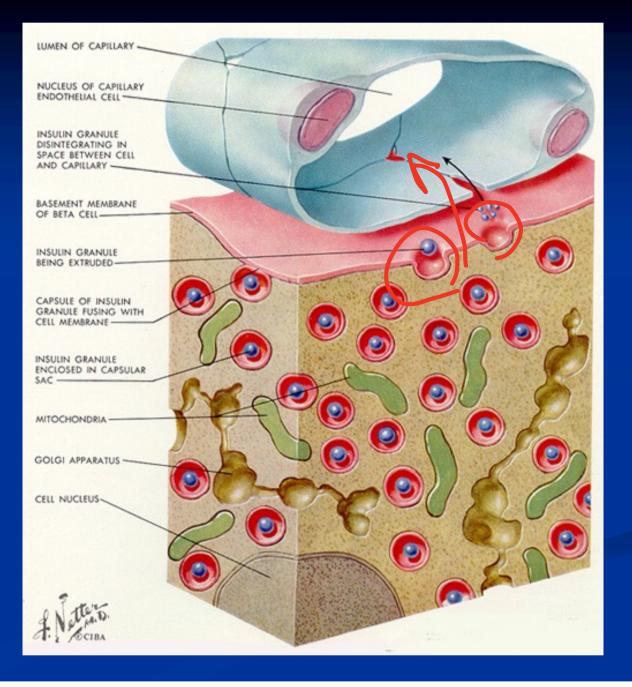

# Pharmacologic Management of Diabetes Mellitus

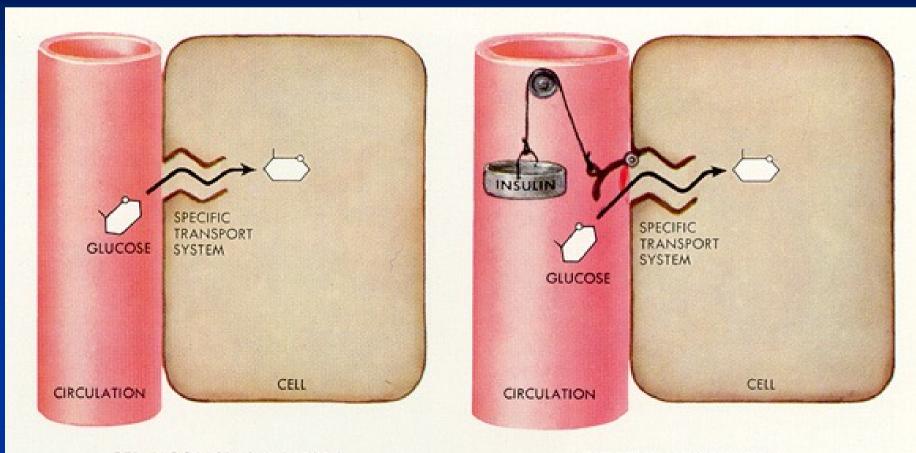

Southern California University of Health Science







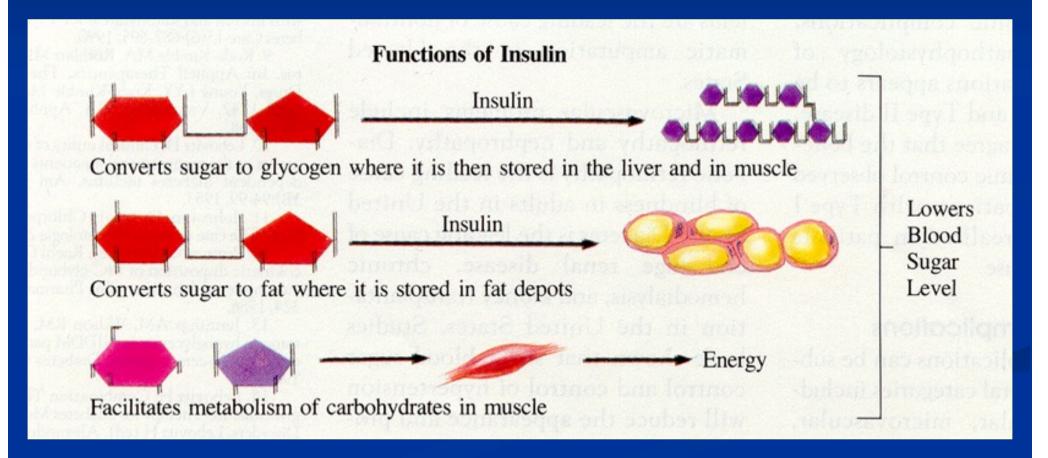

D




Exhausted Beta Cells

# Π

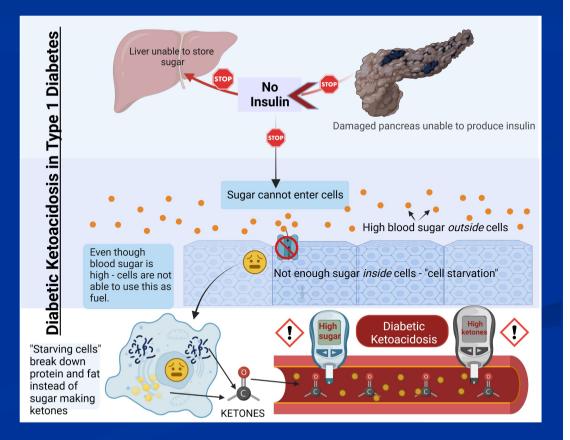



# **Function of Insulin**



RED BLOOD CELLS; NEURONS TRANSPORT (ENTRY) SYSTEM SPECIFIC

FOR CERTAIN SUGARS: INSULIN HAS NO EFFECT ON RATE OF UPTAKE FAT CELLS; MUSCLE CELLS SPECIFIC TRANSPORT SYSTEM KEPT INHIBITED OR COVERED: INSULIN REMOVES COVER AND THUS PROMOTES UPTAKE

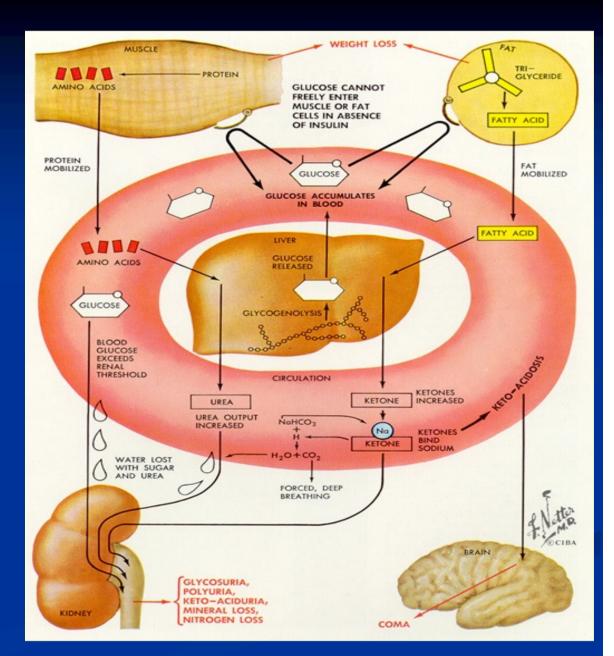

# Function of Insulin



# I. General Considerations

# A. Type I ("Juvenile Onset" or IDDM)

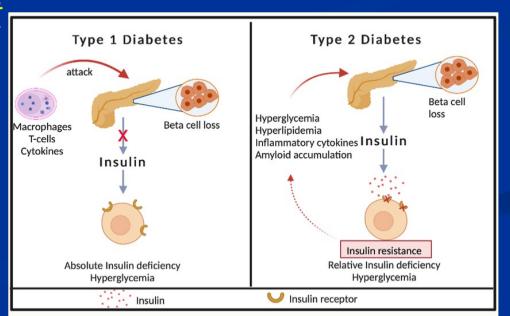
- Type I diabetes represents 5-10% of adult diabetics
- Type I DM is characterized by autoimmune destruction of pancreatic beta cells
   → inability to produce and secrete insulin
   → IDDM
- Type I diabetics are subject to diabetic ketoacidosis (DKA)




I. General Considerations A. Type I DM

Diabetic Ketoacidosis (DKA)

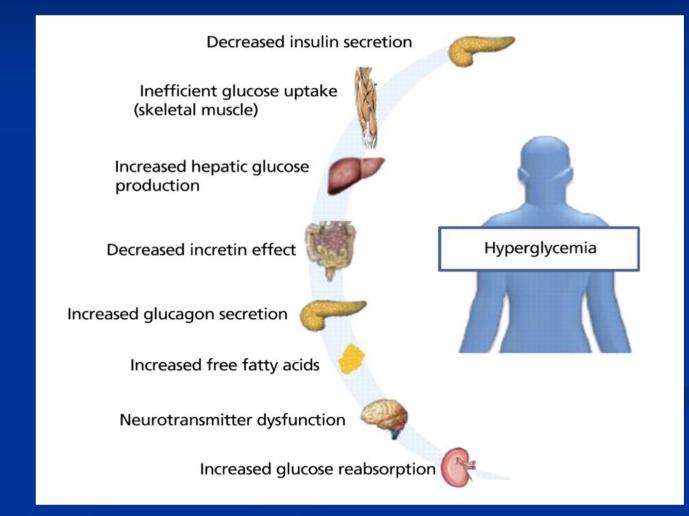
- Fatty acids are converted to glucose by the liver, releasing ketones into the bloodstream → DKA
- DKA is a life-threatening medical emergency.


Normal Values BG: 90-110 mg/dL pH: 7.35-7.45 Bicarbonate: 21-28 mEg/L



# I. General Considerations

# B. Type II ("Adult Onset" or NIDDM)


- Type II DM is characterized by a progressive deficiency of insulin secretion and insulin resistance → hyperglycemia.
- Type II diabetics are subject to hyperosmolar hyperglycemic state (HHS) → severe dehydration and obtundation.
- In Type IDM, there is sufficient insulin production to prevent DKA.
- Although DKA is uncommon in Type II DM, it is more likely to occur during acute illnesses (e.g., sepsis, acute MI).



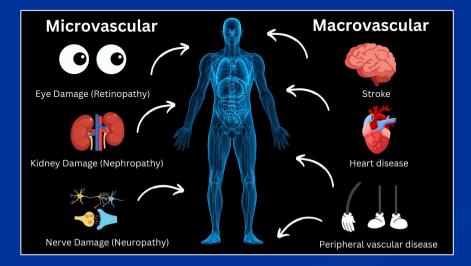
# I. General Considerations

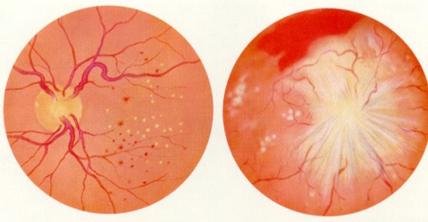
B. Type II Diabetes Mellitus (cont.)

Type II DM is a complex disease involving many pathologic factors ...



# II. Acute Complications of Diabetes


- Acute Symptoms: polydipsia, polyuria, polyphagia, nocturia, hypoglycemia, fatigue, and blurred vision.
- Type I DM: Diabetic Ketoacidosis (DKA)  $\rightarrow$  Coma
- Type II DM: Hyperosmolar Hyperglycemic State (HHS)
   → Non-Ketotic Coma


Diagnostic Criteria for Diabetic Ketoacidosis (DKA) and Hyperosmolar Hyperglycemic State (HHS)

|                             | Diabetic ketoacidosis                                      | Hyperosmolar<br>hyperglycemic state             |                                           |                                                     |
|-----------------------------|------------------------------------------------------------|-------------------------------------------------|-------------------------------------------|-----------------------------------------------------|
| Criterion                   | Mild (serum glucose > 250 mg<br>per dL [13.88 mmol per L]) | Moderate (serum glucose<br>> 250 mg per dL)     | Severe (serum glucose<br>> 250 mg per dL) | Serum glucose > 600 mg<br>per dL (33.30 mmol per L) |
| Anion gap*                  | > 10 mEq per L (10 mmol<br>per L)                          | > 12 mEq per L (12 mmol<br>per L)               | > 12 mEq per L (12<br>mmol per L)         | Variable                                            |
| Arterial pH                 | 7.24 to 7.30                                               | 7.00 to < 7.24                                  | < 7.00                                    | > 7.30                                              |
| Effective serum osmolality* | Variable                                                   | Variable                                        | Variable                                  | > 320 mOsm per kg<br>(320 mmol per kg)              |
| Mental status               | Alert                                                      | Alert/drowsy                                    | Stupor/coma                               | Stupor/coma                                         |
| Serum<br>bicarbonate        | 15 to 18 mEq per L<br>(15 to 18 mmol per L)                | 10 to < 15 mEq per L<br>(10 to < 15 mmol per L) | < 10 mEq per L (10<br>mmol per L)         | > 18 mEq per L (18 mmol<br>per L)                   |
| Serum ketone†               | Positive                                                   | Positive                                        | Positive                                  | Small                                               |
| Urine ketone†               | Positive                                                   | Positive                                        | Positive                                  | Small                                               |

# III. Chronic Complications of Diabetes Mellitus

- A. Microvascular and Macrovascular Disorders
  - Microvascular Disorders: Retinopathy



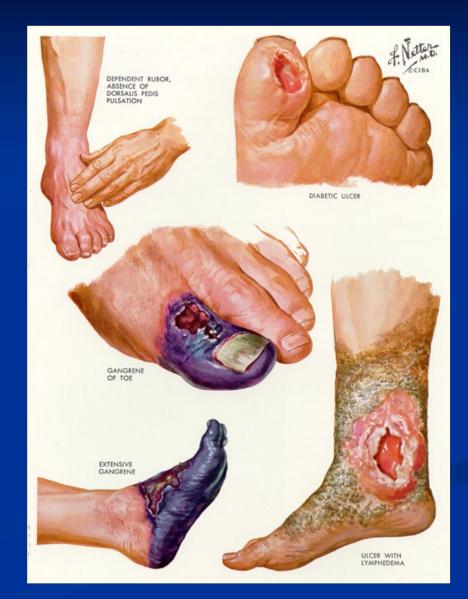


VENOUS DILATATION, MICRO-ANEURYSMS, MINUTE HEMORRHAGES AND YELLOWISH SPOTS IN OCULAR FUNDUS RETINITIS PROLIFERANS AND MASSIVE HEMORRHAGE



THIN-WALLED MICRO-ANEURYSMS AND CAPILLARY KINKING IN FLAT PREPARATION OF RETINA (X 500) H=HEMORRHAGE; D=DISSECTING ANEURYSM; E=EXUDATE

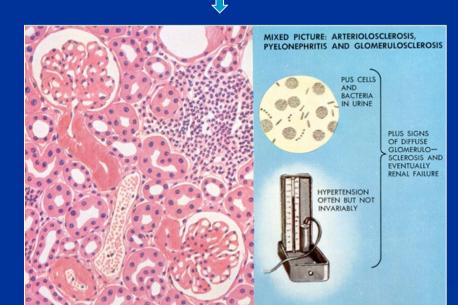


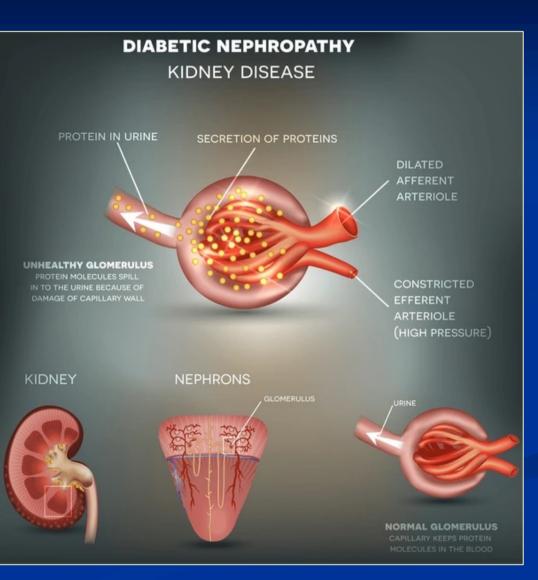



PARTIALLY HYALINIZED AND COMPLETELY HYALINIZED (THROMBOSED) MICRO-ANEURYSMS (X 500)



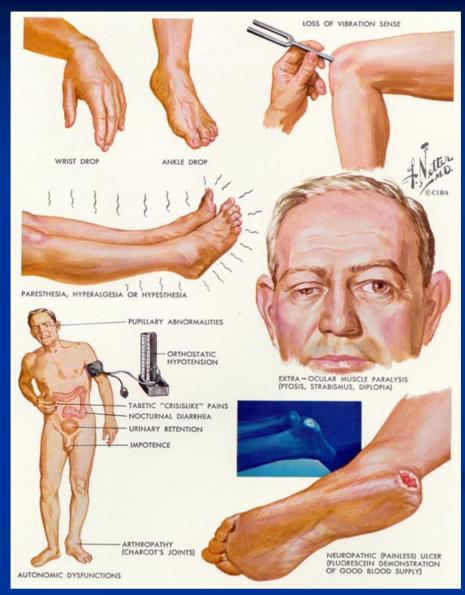
# III. Chronic Complications of Diabetes Mellitus (cont.)


- A. Microvascular and Macrovascular Disorders
  - 2. Macrovascular Disorders
    - Cerebrovascular Disease  $\rightarrow$  CVA (Stroke)
    - Cardiovascular Disease
       → CAD (coronary artery disease) → MI
    - Peripheral Vascular Disease
       → Diabetic Foot Infections
       → Gangrenous Extremities
       → Limb Amputations




# III. Chronic Complications of Diabetes Mellitus (cont.)

# B. Kidney Disorders


- Chronic Kidney
   Disease (CKD, DKD)
- 2. Pyelonephritis





# III. Chronic Complications of Diabetes Mellitus (cont.)

- C. Diabetic Neuropathy
  - 1. Chronic Neuropathic Pain
  - 2. Paresthesia
  - 3. Orthostatic Hypotension
  - 4. Gastroparesis
  - 5. Diabetic Foot Ulcers



# IV. Criteria for Diagnosis of PRE-DIABETES & DIABETES

#### **Criteria for the Diagnosis of PREDIABETES**

A1C <u>></u>5.7%, but <6.5%

## OR

Fasting plasma glucose  $\geq$ 100 mg/dL (fasting is no food for at least 8 hours), but <126 mg/dL

### OR

Two-hour plasma glucose  $\geq$ 140 mg/dL during an oral glucose tolerance test, but <200 mg/dL

**Criteria for the Diagnosis of DIABETES** 

A1C <u>></u>6.5%

#### OR

Fasting plasma glucose  $\geq$ 126 mg/dL (fasting is no food for at least 8 hours)

#### OR

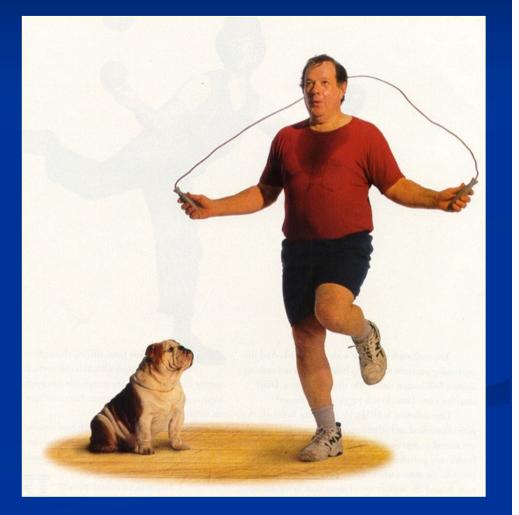
Two-hour plasma glucose <a>200 mg/dL during an oral glucose tolerance test</a>

#### OR

Symptomatic patients with a random plasma glucose >200 mg/dL

|        | 5.7%                                                                                                           | 6.5% |          |  |
|--------|----------------------------------------------------------------------------------------------------------------|------|----------|--|
| NORMAL | PREDIABETES                                                                                                    |      | DIABETES |  |
|        | le de la constante de la const |      |          |  |

# IV. Criteria for Diagnosis of Pre-Diabetes and Diabetes (cont.)


• A1C may also be reported as "Estimated Average Glucose (eAG)"

| A1C | eAG   |        |  |
|-----|-------|--------|--|
| %   | mg/dL | mmol/L |  |
|     | 126   | 7.0    |  |
| 5   | 140   | 7.8    |  |
|     | 154   | 8.6    |  |
| .5  | 169   | 9.4    |  |
|     | 183   | 10.1   |  |
| 5   | 197   | 10.9   |  |
|     | 212   | 11.8   |  |
| .5  | 226   | 12.6   |  |
| 0   | 240   | 13.4   |  |
|     |       |        |  |

# V. Treatment: Lifestyle Modifications

# A. Nutrition

- B. Timing of Meals
- C. Body Weight Considerations
- D. Exercise
  - Exercise improves utilization of glucose.
  - 2. Exercise improves insulin utilization.
  - 3. Exercise improves lipid profile.



# V. Treatment: Lifestyle Modifications

E. BEE (basal energy expenditure) formula allows us to estimate daily caloric requirements.

Sample Caloric Requirement (BEE) Calculation for Stressed Patients

Female: 655 + (9.6 x wt. in kg) + (1.85 x ht. in cm) - (4.7 x age)

Male: 66 + (13.7 x wt. in kg) + (5.00 x ht. in cm) – (6.8 x age)

<u>Sample Calculation</u> (based on patient-specific parameters: ht, wt, age, and disease state)

S.Y. is a <u>64 year-old female</u> patient with <u>major sepsis</u>. Calculate her caloric requirement based on her pathologic condition. Her height is <u>5'4"</u> and body weight is <u>140 pounds</u>.

**Conversion Factors:** 

- body weight from pounds to kg. : 140 lbs / 2.2 = 63.64 kg
- height from inches to cm. : 5'4" = 64 inches x 2.54 = 162.56 cm

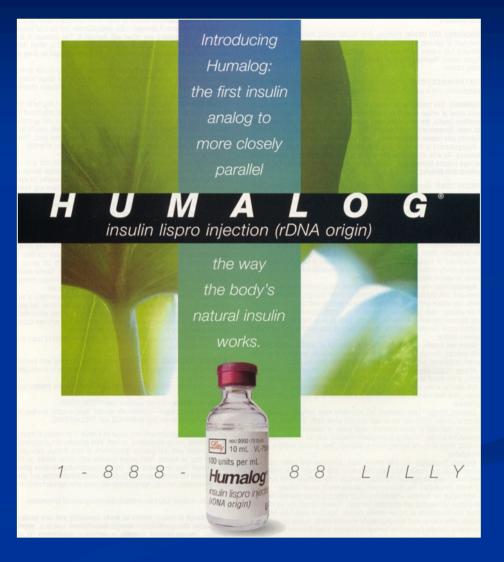
BEE = 655 + (9.6 x 63.64) + (1.85 x 162.56) - (4.7 x 64)

= (655 + 610.94 + 300.74) - (300.8)

= 1265.88 kcal / day

Multiply the BEE value by the appropriate "disease stress factor", which provides additional calories to account for the degree of physiologic stress (based on increased metabolic requirement during pathologic condition – i.e., major sepsis).

BEE for major sepsis = 1.5 x 1265.88


Answer → 1898.82 kcal / day

# VI. Pharmacologic Management of IDDM

# A. Insulin Products

- 1. Rapid-Acting Insulin: Humalog (Lispro)
  - onset: 10 15 min
  - peak: 45 min 1 hour
  - duration: 2 4 hours





VI. Pharmacologic Management of IDDM (cont.)

A. Insulin Products (cont.)

2. Short-Acting Insulin: Regular Insulin (Humulin R)

- onset: 30 60 min  $\rightarrow$  peak: 2 4 hours
- duration: 4 8 hours
- 3. Intermediate-Acting Insulin: NPH (Humulin N)
  - onset: 2-4 hours  $\rightarrow$  peak: 4-10 hours
  - duration: 10 18 hours





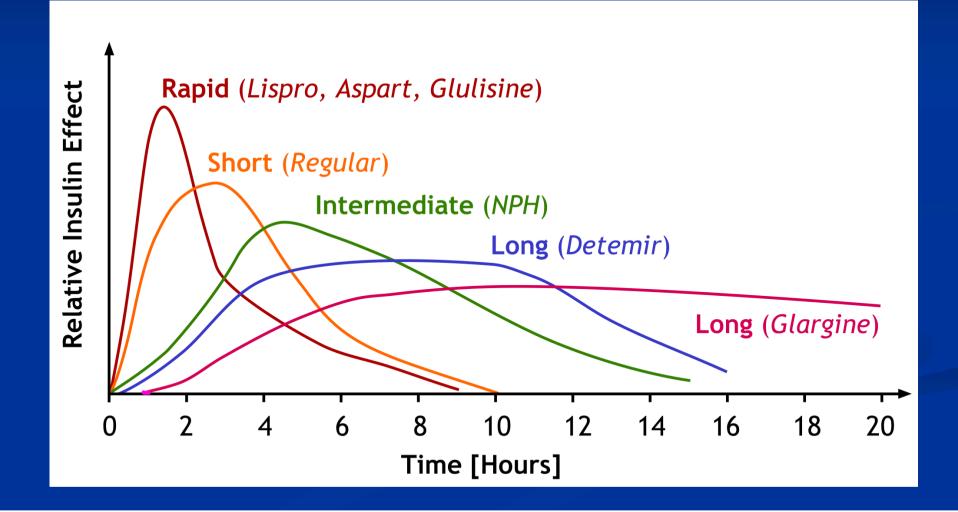




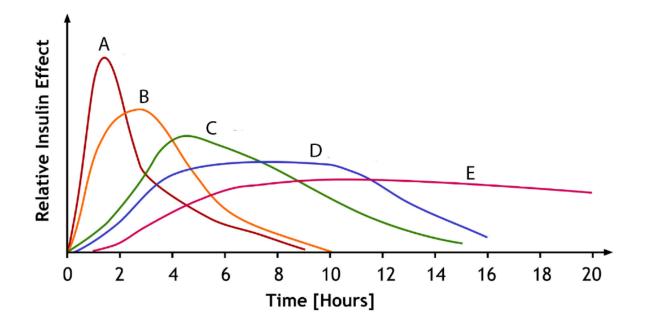
201-

VI. Pharmacologic Management of IDDM (cont.)

- A. Insulin Products (cont.)
  - 3. Long-Acting Insulin:
    - a. Detemir (Levemir)  $\rightarrow$  BID
      - onset: 2 3 hours
      - peak: 6 8 hours
      - Duration: 5.7 23.2 hours
    - b. Glargine (Lantus) → Q24H (mostly) / BID
      - onset: 4 6 hours  $\rightarrow$
      - peak / duration: same action throughout the day for 24 hours







| Insulin Comparison Chart                           |                                           |                                                    |                                                           |                                                                                                                                                                                                                                |                                                                                                                                                   |
|----------------------------------------------------|-------------------------------------------|----------------------------------------------------|-----------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|
| Insulin Name                                       | When does it<br>start working?<br>(onset) | When will the<br>effect be the<br>greatest? (peak) | How long will it<br>lower blood<br>glucose?<br>(duration) | Notes for Use                                                                                                                                                                                                                  | Cost estimate                                                                                                                                     |
| Rapid Acting                                       | •                                         | •                                                  |                                                           |                                                                                                                                                                                                                                |                                                                                                                                                   |
| Lispro (Humalog™)                                  | <15 minutes                               | 0.5-3 hours*                                       | 3-5 hours                                                 | If mixing with NPH, rapid acting<br>insulin should be drawn into syringe                                                                                                                                                       | \$96 (10 ml vial)<br>\$183 (5x3 ml pen cartridges)                                                                                                |
| Aspart (Novolog™)                                  | <15 minutes                               | 0.5-3 hours*                                       | 3-5 hours                                                 | first. Mixture should be given<br>immediately to avoid effects on peak                                                                                                                                                         | \$102 (10 ml vial)<br>\$205 (5x3 ml pen cartridges)                                                                                               |
| Glulisine (Apidra <sup>™</sup> )                   | <15 minutes                               | 0.5-3 hour*                                        | 3-5 hours                                                 | action.                                                                                                                                                                                                                        | \$96 (10 ml vial)<br>\$184 (5x3 ml pen cartridges                                                                                                 |
| Short Acting                                       | •                                         |                                                    |                                                           |                                                                                                                                                                                                                                |                                                                                                                                                   |
| Regular (Novolin R™ or<br>Humulin R™)              | 0.5-1 hour                                | 2-4 hours                                          | 4-8 hours                                                 | May be mixed with NPH in same<br>syringe. Mixing order should be the<br>clear regular drawn up first, then the<br>cloudy NPH (ie "clear to cloudy").                                                                           | <ul> <li>\$53 (10 ml vial Humulin or Novolin)</li> <li>\$121 (5x3 ml Novolin pen cartridges)</li> <li>\$89 (5x3 ml Innolet cartridges)</li> </ul> |
| Intermediate Acting                                | •                                         |                                                    |                                                           |                                                                                                                                                                                                                                |                                                                                                                                                   |
| NPH (Novolin N™ or<br>Humulin N™)                  | 2-4 hours                                 | 4-10 hours                                         | 10-18 hours                                               | Available as pen or in vial to be used<br>with syringe.                                                                                                                                                                        | \$52 (10 ml vial Humulin or Novolin)<br>\$121 (5x3 ml pen cartridges) \$91 (5x3 ml<br>Innolet cartridges)                                         |
| Long Acting                                        |                                           |                                                    |                                                           |                                                                                                                                                                                                                                | milleter earlandges)                                                                                                                              |
| Glargine (Lantus™)                                 | 4-6 hours                                 | Same action<br>throughout the<br>day               | 24 hours                                                  | Do not mix with other insulins.<br>Available as pen or in vial.<br>Duration (clinical trial data):                                                                                                                             | \$97 (10 ml vial)<br>\$177 (5x3 ml Solostar pen cartridges)                                                                                       |
| Detemir (Levemir <sup>™</sup> )                    | 2-3 hours                                 | 6-8 hours                                          | Dose-dependent<br>5.7-23.2 hours                          | 6 hrs (0.1 U/kg), 12 hrs (0.2 U/kg),20<br>hrs (0.4 U/kg), 23 hrs (0.8 U/kg and<br>1.6 U/kg)                                                                                                                                    | \$95 (10 ml vial)<br>\$182 (5x3 ml pen cartridges)                                                                                                |
| Combinations                                       |                                           |                                                    |                                                           |                                                                                                                                                                                                                                |                                                                                                                                                   |
| Humulin or Novolin<br>70/30                        | 0.5-1 hour                                | 2-10 hours                                         | 10-18 hours                                               | 70% NPH +30% regular insulin.<br>Insulin action includes 2 peaks (1<br>from each formulation).                                                                                                                                 | \$54 (10 ml vial)<br>\$135 (5x3 ml pen cartridges) \$94 (5x3 ml<br>Innolet cartridges)                                                            |
| Novolog Mix 70/30<br>Humalog Mix 75/25 or<br>50/50 | <15 minutes                               | 1-2 hours                                          | 10-18 hours                                               | Novolog Mix:<br>aspart protamine 70% + aspart 30%<br>Humalog mix:<br>75/25=75% lispro protamine + 25%<br>lispro<br>50/50=50% lispro protamine + 50%<br>lispro<br>Insulin action includes 2 peaks (1<br>from each formulation). | Humalog Mix 75/25:<br>\$102 (10 ml vial),<br>\$174 (5x3 ml pen cartridges)                                                                        |

# Time Profile Curves of Current Insulin Products

Lispro (Humalog), Aspart (Novolog), Glulisine (Apidra), Regular (Humulin R), NPH (Humulin N), Detemir (Levemir), and Glargine (Lantus)



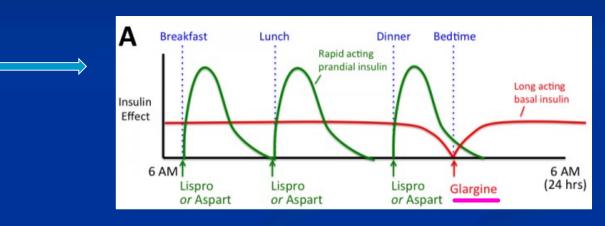
#### <u>Match each insulin product with its corresponding time profile curve (A $\rightarrow$ E).</u>



- 1. Lantus (Glargine) .....
- 2. Humulin R (Regular) .....
- 3. Levemir (Detemir) ......
- 4. Humalog (Lispro) .....
- 5. Humulin N (NPH) .....
- A. Curve B (Short-Acting)
  B. Curve E (Long-Acting → Once Daily Dosing)
  C. Curve C (Intermediate-Acting)
  D. Curve A (Rapid-Acting)
  E. Curve D (Long-Acting → Twice Daily Dosing)

# VI. Pharmacologic Management of IDDM (cont.)

## B. Insulin Regimens


ightarrow

- General Estimate of Daily Insulin Requirement:
   0.5 1.0 units insulin / kg body weight / day
- General Rule: 1 2 units insulin  $\rightarrow$  30-50 mg/dl BG
  - Humalog Sliding Scale Regimen: QID (AC & HS)

| Glucose Level<br>(mg/dL) | <u>Low Dose</u><br><u>Regimen</u><br>(o-6 UNITS)<br>AC & HS | <u>Medium Dose</u><br><u>Regimen</u><br>(o-12 UNITS)<br>AC & HS | <u>High Dose</u><br><u>Regimen</u><br>(o-18 UNITS)<br>AC & HS |
|--------------------------|-------------------------------------------------------------|-----------------------------------------------------------------|---------------------------------------------------------------|
| < 70                     | 25-                                                         | 50 ml Dextrose 50%                                              | IVP                                                           |
| 60 – 150                 | 0                                                           | 0                                                               | 0                                                             |
| 151 - 199                | 1                                                           | 2                                                               | 4                                                             |
| 200 - 249                | 2                                                           | 4                                                               | 6                                                             |
| 250 – 299                | 3                                                           | 6                                                               | 8                                                             |
| 300 - 349                | 4                                                           | 8                                                               | 12                                                            |
| 350 - 399                | 5                                                           | 10                                                              | 14                                                            |
| > 400                    | 6<br>Call MD/PA                                             | 12<br>Call MD/PA                                                | 18<br>Call MD/PA                                              |

## B. Insulin Regimens (cont.)

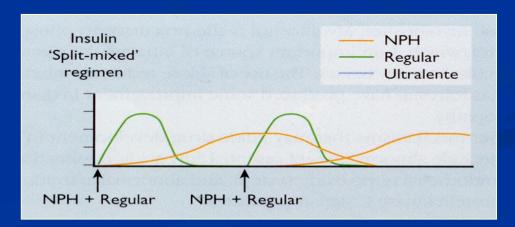
- Method A: Lispro (Humalog) + Glargine (Lantus)
- Method B: Regular Insulin (Humulin R) <u>or</u> Lispro + NPH (Humulin N)





Method A: Basal/Bolus

Insulin Profile


**Regimen** Mimics Normal

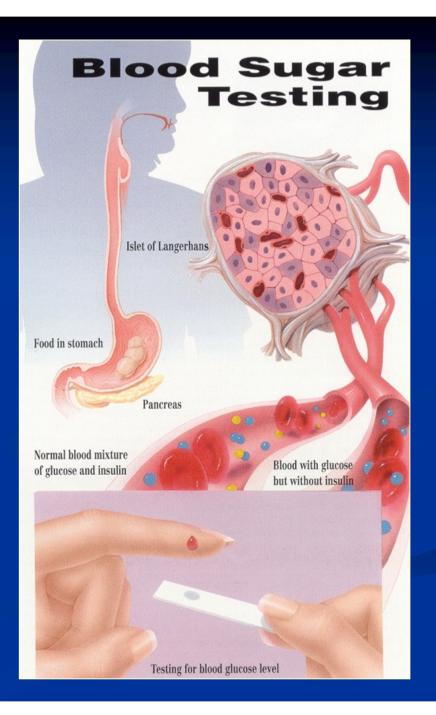
• Short-Acting Insulin

Bolus with Long-Acting

Insulin Basal Coverage

- 7AM: NPH:Reg (2/3 of daily insulin dose)
- 6 PM: NPH:Reg (1/3 of daily insulin dose)




VI. Pharmacologic Management of IDDM (cont.)

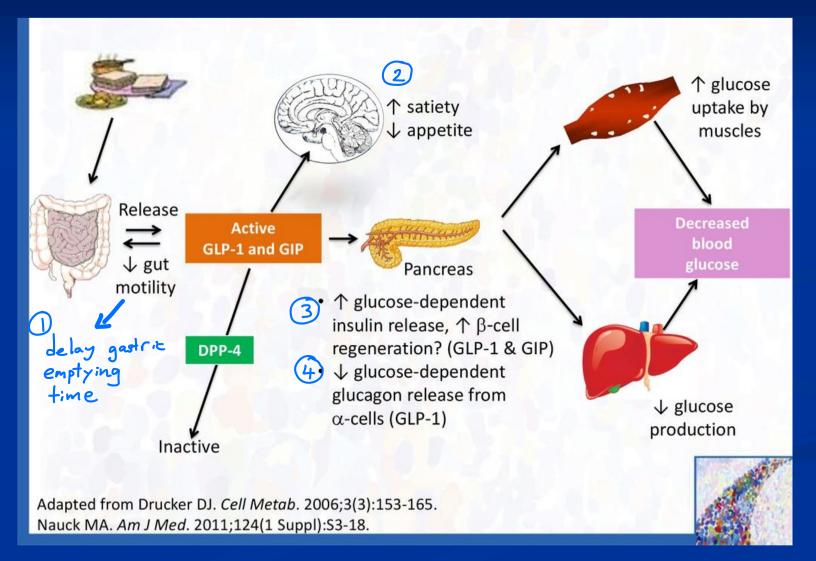
C. Biochemical Indices of Metabolic Control

| <u>Index</u> | <u>Normal</u> | <u>Intensive</u> | <u>Acceptable</u> | Poor     |
|--------------|---------------|------------------|-------------------|----------|
| Fasting      | < 115         | 70-120           | <140              | >200     |
| 2 hrs pp     | < 140         | < 180            | < 200             | > 235    |
| НдЬА1с       | 4-6%          | < 6.5 %          | < 7 %             | > 10%    |
| Urine Gluc   | neg           | rare             | intermit          | constant |
| Urine Keto   | neg           | rare             | rare              | intermit |

VI. Pharmacologic Management of IDDM (cont.)

- D. Monitoring Patients on Insulin Therapy
  - AC & HS (before meals and at bedtime)
  - occasionally at o300 during periods of insulin dose adjustments
  - whenever hypoglycemia is suspected

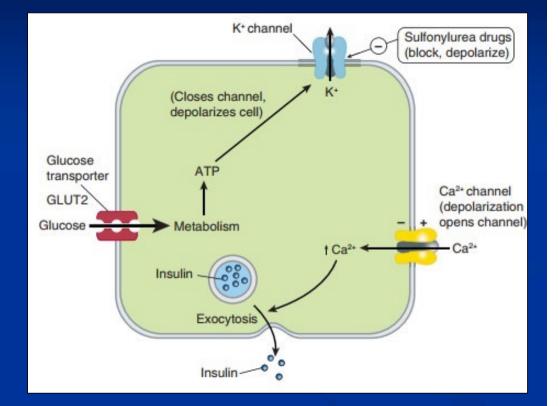



# VII. Management of Type II DM

A. Pathogenesis of Type II Diabetes Mellitus



# VII. Management of Type II Diabetes Mellitus


A. Pathogenesis of Type II Diabetes Mellitus



## A. Sulfonylureas

 MOA: Sulfonylureas increase insulin release by beta cells in the pancreas.

> block K channels depolarizes beta cells insulin release



In the resting cell with normal (low) ATP levels, potassium diffuses down its concentration gradient through ATP-gated potassium channels, maintaining the intracellular potential at a fully polarized, negative level. Insulin release is minimal. If glucose concentration rises, AT production increases, potassium channels close, and depolarization of the cell results. As in muscle and nerve, voltage-gated calcium channels open in response to depolarization, allowing more calcium to enter the cell. Increased intracellular calcium results in increased insulin secretion. Insulin secret-agogues close the ATP-dependent potassium channel, thereby depolarizing the membrane and causing increased insulin release by the same mechanism.

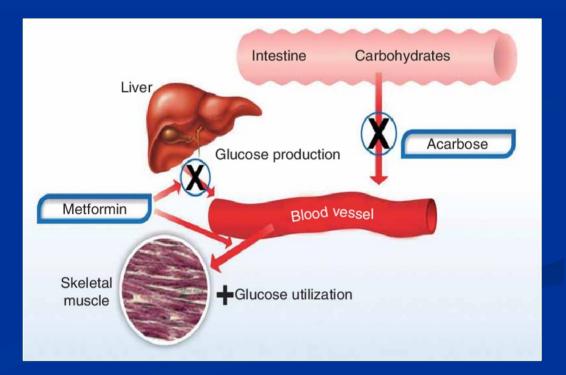
- A. Sulfonylureas (cont.)
  - 2. Second Generation Sulfonylureas
    - Glipizide (Glucotrol)
    - Gyburide (Diabeta, Micronase)
    - Glimepiride (Amaryl)
  - 3. Side Effects
    - Hypoglycemia
      - most common SE, esp. with glimerpiride
    - Weight Gain
      - weight gain may be mitigated with exercise
      - if weight gain worsens rather than improves glycemic control, discontinue sulfonylurea



## Sulfonylureas (2<sup>nd</sup> generation)

|                                               | Dose Size<br>Dose/day (mg) | Peak<br>(hrs) | Dose<br>Interval | Common side<br>effects            |
|-----------------------------------------------|----------------------------|---------------|------------------|-----------------------------------|
| <b>Glyburide</b><br>(Micronase®,<br>DiaBeta®) | 2.5, 5mg<br>1.25mg – 20mg  | 4             | QD – BID         | Weight gain<br>Low Blood<br>Sugar |
| Glipizide<br>(Glucotrol®)                     | 5, 10mg<br>2.5mg – 40mg    | 1 – 3         | QD – BID         | Weight gain<br>Low Blood<br>Sugar |
| <b>Glimepiride</b><br>(Amaryl®)               | 1, 2, 4mg<br>1 – 8mg       | 2 – 3         | QD               | Weight gain<br>Low Blood<br>Sugar |

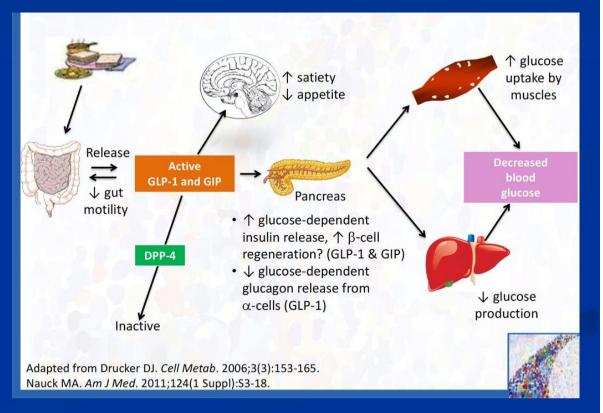
## B. Metformin


- 1. MOA: decreases hepatic glucose production
- 2. Other MOAs associated with metformin include ...
  - decreases intestinal absorption of glucose
  - improves insulin sensitivity (increases glucose uptake / utilization)
- 3. Side Effects (GI): diarrhea, nausea, vomiting, bloating, flatulence.
- 4. Dose: 500 mg 2500 mg / day in divided doses (BID) with meals.
- 5. Cautions and Contraindications:

GFR < 30 ml/min  $\rightarrow$  contraindicated  $\rightarrow$  risk of lactic acidosis GFR < 45 ml/min  $\rightarrow$  caution: consider risks vs benefits

6. Metformin is a 1<sup>st</sup> line agent for newly diagnosed Type II diabetics.

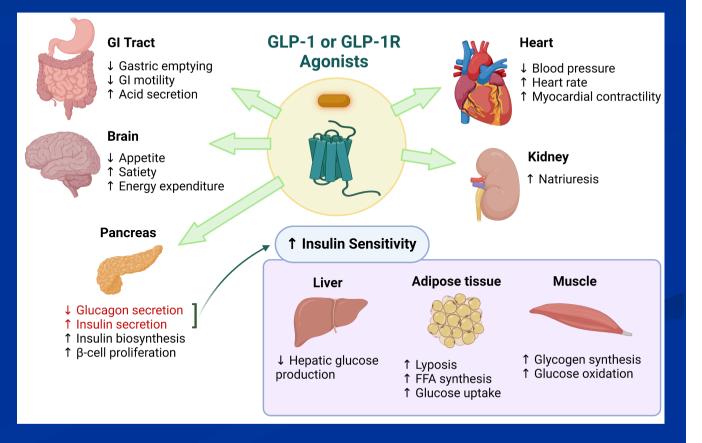
## C. Acarbose (Precose)


- 1. MOA: inhibits breakdown of carbohydrates by inhibiting alpha glucosidase (secreted by small intestine)
- Side Effects (GI): abdominal pain, diarrhea, and flatulence (due to undigested carbohydrates in lower GI tract)
- 3. Dose: 50 100 mg TID with first bite of each meal



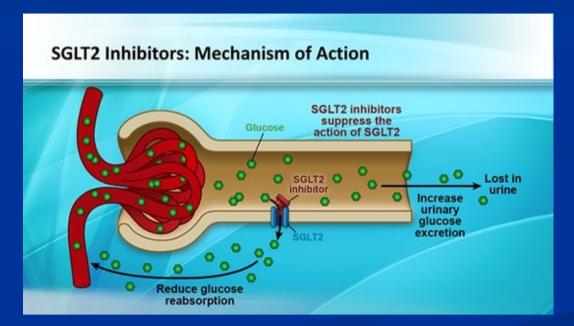
- D. Thiazolidinediones (TZDs or Glitazones): Rosiglitazone (Avandia) and Pioglitazone (Actose)
  - 1. MOA: TZDs increase insulin receptor sensitivity and improve glucose transport in muscle and adipose tissue.
  - 2. Other MOA associated with TZDs includes a decrease hepatic glucose production
  - 3. Side Effects: weight gain, fluid retention, and osteopenia.
  - 4. Pioglitazone (Avandia): 15-30 mg once daily.
  - 5. Cautions and Contraindications:
    - TZDs should not be used in patients with heart failure or any evidence of fluid overload.
    - TZDs should not be used in patients with a history of fracture or at high risk for fracture (e.g., postmenopausal women with low bone mass).

## E. DPP-4 Inhibitors ("Gliptins"): Sitagliptin (Januvia) and Linagliptin (Tradjenta)


- MOA: inhibits DPP-4 enzyme → prolongs active incretin levels (GLP-1 and GIP).
- 2. Side Effects: nasopharyngitis (5%), URI (1%), nausea (2%), diarrhea (4%).
- 3. Sitagliptin (Januvia):100 mg PO once daily.



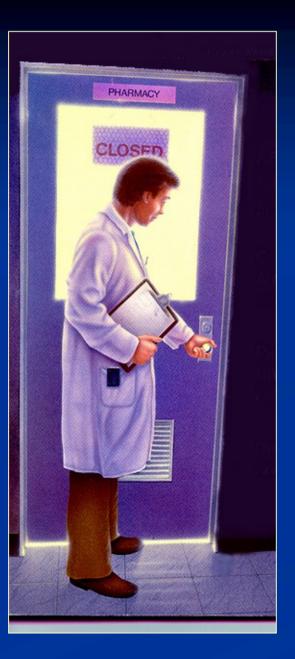
F. GLP-1 Receptor Agonists Semaglutide (Ozempic, Wegovy, Rybelsus): SC/PO Dulaglutide (Trulicity) SC Liraglutide (Victoza): SC Exenatide (Byetta): SC Tirzepatide (Mounjaro): SC


Increase Insulin Release + Decrease Glucagon Release + Increase Satiety + Delay Gastric Emptying Time

 Adverse Effects (GI): nausea (26-50%), vomiting, and diarrhea.



G. SGLT2 Inhibitors (Sodium-Glucose Transport Inhibitors)


MOA: inhibit SGLT₂ transport mechanism → lower blood glucose levels by increasing kidney excretion of glucose into the urine Canaglifozin (Invokana) Dapagliflozin (Farxiga) Empagliflozin (Jardiance)



 Adverse Effects: vaginal candidiasis (10-15%), UTIs (6-8%), dehydration

## Summary of Glucose-Lowering Pharmacologic Agents in Type II DM

| Intervention                                                                                                | Expected decrease in<br>A1C with monotherapy<br>(%) | Advantages                                                                                                                                                                                                 | Disadvantages                                                                                                                            |
|-------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|
| nitial therapy                                                                                              | 1                                                   | 1                                                                                                                                                                                                          | 1                                                                                                                                        |
| Lifestyle change to<br>decrease weight and<br>increase activity                                             | 1.0 to 2.0                                          | Broad benefits                                                                                                                                                                                             | Insufficient for most within<br>first year owing to<br>inadequate weight loss and<br>weight regain                                       |
| Metformin                                                                                                   | 1.0 to 2.0                                          | Weight neutral                                                                                                                                                                                             | GI side effects,<br>contraindicated with renal<br>insufficiency (eGFR <30<br>mL/min/1.73 m <sup>2</sup> )*                               |
| Additional therapy <sup>¶</sup>                                                                             |                                                     |                                                                                                                                                                                                            |                                                                                                                                          |
| Insulin (usually with a<br>single daily injection of<br>intermediate- or long-<br>acting insulin initially) | 1.5 to 3.5                                          | No dose limit, rapidly<br>effective, improved lipid<br>profile                                                                                                                                             | 1 to 4 injections daily,<br>monitoring, weight gain,<br>hypoglycemia, analogs are<br>expensive                                           |
| Sulfonylurea (shorter-<br>acting agents preferred)                                                          | 1.0 to 2.0                                          | Rapidly effective                                                                                                                                                                                          | Weight gain, hypoglycemia<br>(especially with<br>glibenclamide or<br>chlorpropamide)                                                     |
| GLP-1 receptor agonist<br>(daily to weekly<br>injections)                                                   | 0.5 to 1.5                                          | Weight loss, reduction in<br>major adverse<br>cardiovascular events<br>(liraglutide, semaglutide,<br>dulaglutide) in patients with<br>established CVD and<br>potentially for those at high<br>risk for CVD | Requires injection, frequen<br>GI side effects, expensive                                                                                |
| Thiazolidinedione                                                                                           | 0.5 to 1.4                                          | Improved lipid profile<br>(pioglitazone), potential<br>decrease in MI<br>(pioglitazone)                                                                                                                    | Fluid retention, HF, weight<br>gain, bone fractures,<br>potential increase in MI<br>(rosiglitazone) and bladder<br>cancer (pioglitazone) |
| SGLT2 inhibitor                                                                                             | 0.5 to 0.7                                          | Weight loss, reduction in<br>systolic blood pressure,<br>reduced cardiovascular<br>mortality in patients with<br>established CVD, improved<br>renal outcomes in patients<br>with nephropathy               | Vulvovaginal candidiasis,<br>urinary tract infections,<br>bone fractures, lower limb<br>amputations, DKA                                 |
| DPP-4 inhibitor                                                                                             | 0.5 to 0.8                                          | Weight neutral                                                                                                                                                                                             | Possible increased risk of H<br>with saxagliptin, expensive                                                                              |
| Alpha-glucosidase<br>inhibitor                                                                              | 0.5 to 0.8                                          | Weight neutral                                                                                                                                                                                             | Frequent GI side effects, 3<br>times/day dosing                                                                                          |

